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Abstract

By equating three temperature definitions that should simultaneously hold for an

equilibrium thermodynamics of spacetime’s degrees of freedom, it is immediately found

that the latter only applies to spacetime surfaces with constant Newtonian gravitational

potential, a result that was only rigorously proven in 2018. The laws of thermodynam-

ics can correspondingly be rephrased in terms of spacetime’s state variables at these

surfaces.

Since the development of black hole thermodynamics by Bardeen et al. [1] in the 1970’s,

it has become clear that the laws of thermodynamics should not be limited to black hole

horizons, but apply more broadly to the dynamics of spacetime as described by general

relativity theory. Indications in this direction have come from, amongst others, the Tolman-

Ehrenfest effect [2], the Fulling-Davies-Unruh effect [3], Jacobson’s equation of state [4],

and entropic gravity approaches. Additionally, for theories of (quantum) gravity involving

a minimal length scale, some thermodynamic description for the microscopic constituents of

spacetime simply must exist [5].
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The laws of thermodynamics outline the constraints that systems obey in their statistical

behaviour, usually in terms of state variables and for (quasi) equilibrium states. They can be

summarized as (0) transitivity of thermal equilibrium; (1) energy conservation; (2) entropy

increase with time; and (3) non-zero temperature. A thermodynamics of (curved) spacetime

is thus obtained by defining an energy E, temperature T , and entropy S for the spacetime

constituents, corresponding to the degrees of freedom N , that are in agreement with common

thermodynamic concepts and compliant with the above laws, under the assumption of (local)

equilibrium.

In order to uniquely determine the thermodynamic state variables E, T , S, and N in a

dynamic spacetime context, one would need a system of at least four independent equations

relating these quantities to each other as well as to general relativity theory. One of these

equations has to be the connection between temperature and entropy as conjugate thermo-

dynamic variables. Or, the conjugate temperature Tc is defined as a system’s energy change

with entropy:

Tc =
∂E

∂S
(1)

The connection with spacetime dynamics can be made through the Davies-Unruh tem-

perature, being the effective temperature Ta that is experienced by an uniformly accelerating

observer in a quantized vacuum field [3]:

Ta =
h̄a

2πckB
(2)

with a the acceleration, and where h̄ is the reduced Planck constant, c the speed of light

in vacuum, and kB the Boltzmann constant. If, through the equivalence principle, this

acceleration is due to a gravitational field from a distant mass M (i.e., spacetime curvature

induced by M), then a connection between Eqs. (1) and (2) can be made using Einstein’s

mass-energy relation:

E = Mc2 = Nmm1c
2 (3)
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where the latter equation additionally introduces the system’s degrees of freedom. It ex-

presses that M is characterized by Nm constituents, each representing a unit-mass m1 (which

is to be determined later on).

This brings us to three equations for four unknowns. One can however proceed by explic-

itly imposing an equilibrium thermodynamics, at the small price of not knowing beforehand

to which degrees of freedom the equilibrium applies. For systems in thermal equilibrium, the

energy is equally distributed over the equilibrium degrees of freedom Ne that, from Eq. (1),

have to be proportional to S. Correspondingly, the equipartition temperature Te provides a

measure for the energy per degree of freedom, given by:

Te =
2E

kBNe

(4)

By equating the above temperature expressions, Tc ≡ Ta ≡ Te, one can hence identify

whether or when (under what conditions) an equilibrium thermodynamics of spacetime is

valid. This validity is expressed in terms of constraints on the degrees of freedom, in order

to answer our key question: Which spacetime constituents, if any, would obey Eqs. (1) to

(4) simultaneously? The answer is quite straightforward. Connecting Eqs. (2) and (4) for a

gravitational pull g in presumed thermodynamic equilibrium yields:

g =
4πGM

Nel2P
(5)

given that l2P = h̄G/c3 defines the Planck length lP . This expression exactly corresponds to

the Newtonian gravitational pull gN = 4πGM/A at any spherical surface A that is centered

at the mass centre of M , if A represents Ne degrees of freedom of two-dimensional size l2P .

Taking that Eq. (5) also holds for the Schwarzschild horizon, and by insertion of Eq. (3),

additionally learns that in thermal equilibrium:

Ne = 4πN2
m (6)
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for a unit mass that equals half the Planck mass: m1 = mP/2, with mP = (c2/G)lP [6].

Most importantly, however, is that Eqs. (5) and (6) hold for all spacetime volumes with

constant Newtonian gravitational potential, corresponding to all spherical surfaces A cen-

tered at the mass centre of M , where the gravitational acceleration and the surface normal

are parallel. Such surfaces indeed have Nm ∝ R (cf. the Schwarzschild or de Sitter solution

to Einstein’s field equations) and Ne ∝ R2 in agreement with Eq. (6). Remarkably, this

result was only rigorously proven in 2018 [7], although it had been suggested before [8, 9].

As noted in these references, this has its consequences for entropic views on gravity that

do not hold without equipartition and hence are valid for spherically-symmetric equilibrium

states only. The proportionality between the energetic degrees of freedom Nm and the radius

R of A moreover indicates that the thermodynamics of the surface rather behaves like that

of a one-dimensional quantum system [10].

By insertion of the surface degrees of freedom NA = Ne = 4πN2
m into Eq. (4), one obtains:

TA =
h̄c3

8πkBGM
(7)

as the surface temperature TA for each concentric spherical surface around M . This result

expresses a generalization of the Hawking temperature of black hole surfaces to all concentric

spherical surfaces enclosing an isolated mass [11]. The temperature of curved spacetime

as such represents a distance-dependent mass-reciprocal: If M denotes the Komar mass

including the norm of a timelike Killing vector field
√
gtt [12], then TA

√
gtt is constant for

all spherical surfaces enclosing M , in agreement with the Tolman-Ehrenfest effect [2, 13].

Correspondingly, TA also expresses the rate of the local gravitationally-delayed time with

respect to proper time, and thus allows introducing the concept of thermal time [14].

Finally, equating Eq. (1) with Eq. (7) yields:

∂S = 2πkBNm∂Nm (8)
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or by integration on the surface A, up to a constant that is set to zero:

SA = πkBN
2
m =

kBNA

4
(9)

as an expression for the equilibrium spacetime (constituent) entropy of any mass-centered

spherical surface, which is proportional to Ne as anticipated. Combining the above results,

the laws of equilibrium thermodynamics can be given a proper interpretation for the Planck-

scale constituents of (curved) spacetime, each representing a mass mP/2:

(0) The temperature of spacetime is constant only on mass-centered spherical surfaces.

Stated differently, non-spherically-symmetric mass distributions are not in thermal equi-

librium (yet).

(1) Spacetime constituent numbers are conserved. Energy changes result from changes in

surface constituent numbers (here not taking into account changes in angular momentum

and electric charge): ∂E = (kBTA/4)∂NA from Eqs. (1) and (9).

(2) The number of surface constituents cannot decrease: ∂NA/∂t ≥ 0. This inequality ex-

presses that gravity is an aggregating force. Stated differently, spacetime constituents cannot

induce anti-gravitational effects (in contrast with e.g. Hawking radiation).

(3) The surface temperature TA cannot vanish: TA > 0. Given Eq. (7), this statement covers

several considerations. First, one cannot have spacetime without gravity, or, spacetime has

energy. Second, the degrees of freedom Nm must be finite within any finite radius, as the

constituents of spacetime have a finite spatial extent lP . Finally, any measured (Komar or

other) mass must be finite too, also reflecting that masses cannot be accelerated up to or

beyond the speed of light.

The above obviously reduces to black hole thermodynamics for Nm = R/lP and NA =

4πR2/l2P [1], a limiting case that is valid for all causal horizons though. In their more general

form, the laws of spacetime thermodynamics elaborate on Jacobson’s expression of the Ein-

stein field equations as an equation of state [4]. One has to conclude that, through these field
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equations, the dynamics of spacetime is the only one capable of maintaining temperature

gradients in thermal equilibrium states without violating the laws of thermodynamics [15],

but it can only do so in spherically-symmetric scenarios.
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